Oracle Data Visualization Tutorial

Before You Begin

Purpose

In this tutorial you learn how to use Oracle Data Visualization to create visualizations to explore and analyze the data.

There are four sections in this tutorial:
1. Creating a Data Visualization with Sample Data
2. Adding Data Sources from Comma Separated Value Files
3. Creating a Data Flow
4. Adding a Data Source from Oracle Database

Time to Complete

40 minutes

Background

Oracle Data Visualization makes rich, powerful visual analytics accessible to every business user. People at all levels of an organization can blend and analyze data in just a few clicks, effectively sifting through data clutter to quickly uncover and share hidden patterns and actionable insights.

You begin by creating a project in Oracle Data Visualization with sample data sources. Then you create visualization, modify the visualization by moving data elements into and out of the canvas, manually change the visualization type, and apply filters. You also learn how to navigate and adjust the canvas layout, and how to find, organize, and manage content.

What Do You Need?

Before starting this tutorial, you should:
- Download Oracle Data Visualization Desktop from here and install it on your computer. Select the Deploy Samples default option during the installation process. We use Oracle Data Visualization 12c 12.2.2.2.0 in this tutorial.
- Download the sample data files, People.csv and Income.csv
Creating a Data Visualization with Sample Data

Double click the Oracle Data Visualization Desktop 12c icon on your desktop to start the application.

It takes a few seconds to initialize the application.

The Home page gives you a look inside your folder which contains the visualization projects you created.
and a sample project created during the process of installation of Oracle Data Visualization.

Before you can begin to explore data in a new project, you must select a data source for that information. Click **Data Sources** to display the existing data sources.

You can select Oracle Applications, databases, or uploaded data files as your data sources. We use the sample data source provided to discover the capabilities of Oracle Data Visualization Desktop in this step. The sample data set is based on Sales Orders data and contains meaningful measures and attributes.

Double click **Sample Order Lines**. It brings you into the Data Elements pane with all the data elements in the sample data available.

After you select the data sources for your project, you can begin to add data elements such as measures and attributes to visualizations. You can see the list of data elements on the left.
Select both **Product Category** and **# of Orders** and then right click to show the right-click menu. Select **Pick Visualization...** on the pop-up menu.

In the View Select dialog, select the **Treemap** visualization type.
A tree map of # of Orders by Product Category is generated. You can see the largest one is Office Supplies with 3949 orders followed by Technology and then Furniture.

You can work with color to make visualizations more attractive, dynamic, and informative. The Visualize canvas has a Color drop target where you can put a measure column, attribute column, or set of attributes columns.

Select **Product Category** on the left, drag and drop it into the Color drop target.
The blocks in the tree map are colored in different colors. It is easier to distinguish the differences among the product categories.

You might want to add Product Sub Category information to the tree map as well. It might help you understand the sales better.

Select **Product Sub Category** on the left, drag and drop it **under** the Product Category in the **Category** drop target.
You can see there is a sub tree map in each product category block for you to drill down into each sub product category.

Now let’s add a new visualization – a map of sales by states.
Right click in the blank area of Data Elements pane on the left, select Add Data Source in the pop-up menu.
Select **Sample States**, click **Add to Project** in the Add Data Source dialog.

You can see the elements in the Sample States data source are expended in the Data Elements pane. Right click in the blank area of Data Elements pane, select **Source Diagram**... in the pop-up menu.
You can see that the Sample Order Lines and the Sample States are connected by City, which is an element in common in both of the data sources.

Select both **Sales** in the Sample Order Line and **State** in the Sample States, right click and select **Pick Visualization**... on the pop-up menu.
In the View Select dialog, select the **Map** visualization type.

A map of sales by states is added to the right of tree map.
To make the map more interactive, we are going to do a couple of things. First, select **Country** in the Sample States on the left and drag and drop it to the filter bar area on the top.
In the pop-up country list, select United States.

The map is focused on United States area. Click the Maximize the View icon on the top-right corner of the
You can get a better view of sales by state in the United States. The revenue in the states range from 13K to 403K, colored from light green to deep green. Obviously California has the largest revenue. The grey color indicates where there is no revenue.
Select # of Customers on the left and drag and drop it to the Color (Bubble) drop target and Size (Bubble) drop target respectively.
The more customers a state has, the deeper color and larger bubble it has. Click the Close Maximized Visualization icon in the top-right corner of the map.

Select Sales in the Sample Order Line list on the left, right click it and select Pick Visualization... on the pop-up menu.
In the View Select dialog, select the Tile visualization type.

Drag and drop the Profit tile to the top after it is displayed at the bottom. Create the Sales tile and Quantity Ordered tile respectively in the same way. You can adjust the positions of the tiles by drag and drop.
Right click the Sales tile and select Properties on the pop-up menu.

Select # in the Properties dialog, and click Auto in the Number format line, and then select Currency. The property items changes accordingly after the Currency item is selected.

Click 0.01 at the right of Decimal, select None in the pop-up menu.

Change the properties of Profit tile in the same way.
Now you get a nice visualization. You can save and share. You can see the tiles of Sales, Profits, and Quantity Ordered on the top. Down below you can see the tree map by product category and sub product category. You can also see the geographic distribution of sales and # of customers by states US.

Adding Data Sources from Comma Separated Value files

In this section you add two data sources from Comma Separated Value files with the .CSV extension to your project. You can also add Microsoft Excel spreadsheet file. Data source files from a Microsoft Excel spreadsheet file must have the XLSX extension (signifying a Microsoft Office Open XML Workbook file).
Return to the Home page, and click **Data Sources** on the top and click **Data Source** on the left.

In the Create New Data Source dialog, click **Add Connection** to view different types of data sources Oracle Data Visualization supports.
Oracle Data Visualization can connect many types of data sources like Oracle Applications, databases, Salesforce, Spark.

Because you will upload Comma Separated Value files as the data sources in this section, click the left arrow icon to go back to the Create New Data Source dialog.

In the Create New Data Source dialog, click File.

In the Select File dialog, select the People.csv file, which should be downloaded at the beginning of this tutorial.
The column names and data from People.csv are listed. Note, only part of the records in the data source is displayed.
You can modify the uploaded data to help you further curate (organize and integrate from various sources) data in projects. This is also sometimes referred to as data wrangling.

Click the A icon on the column TotalPopEst2015, select the option # Measure. The data type of TotalPopEst2015 is changed from attribute to measure.

Do the same thing for TotalPopEst2014 column.

A data source can contain any of the following:
- **Match columns**: These contain values that are found in the match column of another source, which relates this source to the other (for example, Customer ID or Product ID).
- **Attribute columns**: These contain text, dates, or numbers that are required individually and aren’t aggregated (for example, Year, Category Country, Type, or Name).
- **Measure columns**: These contain values that should be aggregated (for example, Revenue or Miles driven).
Click the gear icon alongside PopChangeRate1415, click Sum and select Average as the aggregation type instead in the pop-up menu.

Do the same thing for PopChangeRate1015 column.

Click OK.

The People data source is created as shown above. Click People to view its elements.
Select all of the data elements in the People data source, right click them, and click **Pick Visualization**... in the pop-up menu.

In the View Select dialog, select the **Table** visualization type.
The columns and rows of data in the People data source are listed in the table.

Create the Income data source from Income.csv file in the same way as we create the People data source above.

Creating a Data Flow

In this section we create a data flow from the People and Income data sources created in the previous section. Data flows are a way to produce a curated data source that you can use to easily and efficiently create meaningful visualizations. You can create a data flow from one or more data sources.
Return to the Home page, and click **Data Sources** on the top and click **Data Flow** on the left.

In the Add Data Source dialog, select the **People** data source that we want to base the data flow on. You can select only one data source in this dialog; if needed, you can add additional data sources later. Click **Add**.

The Data Flow editor is displayed and the columns from the selected data source are displayed in the Data Elements pane. The data source **People** is displayed as the first step in the workflow diagram pane.
In the Data Flow editor, go to the workflow diagram pane and right click the People icon. Select Add Step.

From the Add Step window, click Add Data to add the Income data source.
In the Add Data Source dialog, select **Income**. Click **Add**.

The Income data source is also added to the workflow diagram pane.

Click the save data flow icon in the top left corner and select **Save**. Although you have not completed the data flow, it’s always a good habit of saving it in time.

In the Save Data Flow As dialog, input **People and Income DF** as the name of the data flow you are working on. Click **OK**.

You can see that the data flow is saved and named People and Income DF.
Let’s continue to create the data flow after saving it.

In the workflow diagram pane, select both the People and the Income icons and right click them. Select Join.

In the Step Details pane, you can see the two data sources are joined by the match column FIPS.

You can analyze a data source on its own, or you can analyze two or more data sources together, depending on what the data source contains. If you use multiple sources together, then at least one match column must exist in each source. The requirements for matching are:

• The sources contain common values (for example, Customer ID or Product ID)
• The match must be of the same data type (for example, number with number, date with date, or text with text)
Click **Preview**, you can preview the joint data. Notice that the columns of FIPS, State, and County exist in both People and Income data sources, so the duplicate columns are renamed as FIPS_1, State_1, County_1 automatically.

In the workflow diagram pane, right click the **Join** icon. Select **Add step**.

From the Add Step window, click **Select Columns**.
In the Step Details pane, select the duplicate columns of FIPS_1, State_1, and County_1. Click Remove selected.

The duplicate columns are removed to the left. Click Preview.
Now there is no duplicate column in the joint data set.
However, if you look into the top five rows, you can find that:
In the first row, the United States should be a country rather than a county. The FIPS is 0.
In the second row, Alabama should be a state rather than a county in the United States. The FIPS is 1000.
Autauga, Baldwin, and Barbour and so on are counties in Alabama, the FIPS’ are 1001, 1003, and 1005 and so on respectively.

The country, state, and county level rows are mixed together in this data source. We need to remove the rows of the United States and the states from the table, and leave only the county rows in the table for further analysis and visualization.

In the workflow diagram pane, right click the Select Column icon. Select Add step.

From the Add Step window, click Add Columns.
In the Step Details pane, click **Math** to expand the list of math functions.

Scroll down the list and double click the **Mod** function.
The MOD function is selected in the edit box. Input FIPS as the first parameter and 1000 as the second parameter for the MOD function. Input LOCATE_STATE as the new column name. Click Validate and Apply. Then click Preview.

You can see that a column named LOCATE_STATE is added on the right. The values of LOCATE_STATE of the country and state level rows are zero, and the values of the county level rows are non-zero.

In the workflow diagram pane, right click the Add Columns icon. Select Add step.
From the Add Step window, click Filter to filter the country and state level rows out.

Select LOCATE_STATE in the data element list on the left, drag and drop it to the Expression edit box. Input <>0, click Validate and Apply. Click Preview.
You can see that only the rows with the non-zero values of LOCATE_STATE are kept in the table for further analysis.

In the workflow diagram pane, right click the Filter icon. Select Add step.

From the Add Step window, click Rename Columns.
In the Step Details pane, rename the following columns.

PopChangeRate1415 -> Pop Change Rate 1415
PopChangeRate1015 -> Pop Change Rate 1015
TotalPopEst2015 -> Total Pop Est 2015
TotalPopEst2014 -> Total Pop Est 2014
PerCapitalinc -> Per Capita Inc 2014
PovertyAllAgesPct2014 -> % Poverty All Ages 2014

Click **Review**.
You can see the renamed columns in the table.

In the workflow diagram pane, right click the Rename Columns icon. Select Add step.

From the Add Step window, click Aggregate.
The aggregate function for each data element should be shown as that in the screenshot. If not, change the functions to Average or Sum accordingly. The function is **Sum** for **Total Pop Est 2015** and **Total Pop Est 2014**, and **Average** for the rest of data elements.

In the workflow diagram pane, right click the **Aggregate** icon. Select **Add step**.

From the Add Step window, click **Save Data**.
In the Step Details pane, input **People and Income** as the output data source name.

Click the **right arrow icon** at the top right corner to execute the data flow.

Return to the Home page, and click **Data Sources** on the top and click the newly created **People and Income** data source.

In the data element list, select both **State** and **Total Pop Est 2014**, right click them, and select **Pick Visualization...** on the pop-up menu.
In the View Select dialog, select the **Map** visualization type.

You can see that states are colored in blue. The darker the color is, the higher value of Total Pop Est 2014 is.

Right click **My Calculations** on the left, select **Add Calculations**...
Drag and drop Total Pop Est 2015 and Total Pop Est 2014 from the date element list to the edit box in the New Calculation dialog, add an minus (-) symbol between them. Name it as Pop Change 1415.

Click Validation. Click Save.

The newly created Pop Change 1415 calculation is listed under the My Calculations folder on the left. Select both State and Pop Change 1415, right click them, and select Create Best Visualization in the pop-up menu.
Oracle Visualization allows even nontechnical users to select a few data elements and generate what the software thinks is the best visualization for the relationships between those items. It helps business users uncover patterns and understand their data better. In this example, it creates a bar chart for the estimated population change between year 2015 and year 2014. From the bar chart, we can easily see the states with big positive or negative changes.

Click the Share Project icon in the top right corner, save the project as People and Income Viz.

Adding a Data Source from Oracle Database

In the Data Sources page, go to the Create pane, and click Connection.
In the Create New Connection dialog, click the **Oracle Database** icon.

In the Add a New Connection dialog, enter **BDJOURNEY** as the **Connection Name**, and then enter the required connection information, such as **Host**, **Port**, **Password**, and **Service Name**. Note that your connection information might be different from that shown in the screenshot.
Click **Save**. You can now begin creating data sources from the connection.

In the Data Sources page, go to the Create pane, and click **Data Source**.

In the Create New Data Sources page, click **BDJOURNEY** connection created just now.
In the Create Source dialog, double click BDJOURNEY, the table list is displayed.

In the Create Source dialog, browse or search for and double-click the TWITTER_FINAL table where you store the twitter data generated from previous tutorials. Your table name might be different.
Select both `RETWEET_COUNT` and `RETWEET_STATE` from the column list. Click Add Selected. Click Enter SQL in the top right corner to display the SQL Statement field.

In the SQL Statement field, add aliases, Count and State, to make column names more readable. Click Refresh Data to view a snapshot of the data in the columns that you selected. Click OK.
The new data source named TWITTER_FINAL is created and is included in the Databases section of the Display pane. The data source contains a cached copy of the data, and you can refresh the data and metadata from that data source, as needed.

Click the TWITTER_FINAL data source.

Click Data Elements icon at the top left corner to display the columns.
Select both COUNT and STATE, right click, and select Pick Visualization... in the pop-up menu.
In the View Select dialog, select the **Table** visualization type.

Drag and drop **STATE** to the top of **COUNT** in the Rows drop target to adjust the display order of the columns in the table. There are 4,608 tweets in Indiana and 301,824 tweets in New York. The blank ones are tweet counts outside of the US.
Go back to the Home page, Click the project **People and Income Viz** you saved in the previous section.

Right click in the blank area of Data Elements pane on the left, select **Add Data Source** in the pop-up
Select TWITTER_Final in the Add Data Source window.

Drag and drop COUNT from the data element list on the left to the **Size (Bubble)** drop target. Two bubbles are displayed in the map.
The larger size bubble represents the tweet count in New York.

Save the project.

Want to Learn More?

- [Oracle Data Visualization Cloud Service - Overview and Pricing](#)
- [Oracle Data Visualization Cloud Service - Help Center](#)
- [Oracle Cloud White Papers](#)
- [Oracle EPM & BI Tutorials YouTube Channel](#)